Genetic Object Oriented
Programming

(GOOP)



Outline

 Basic idea
* Previous work

» What might we get?
 Reality check

« Possible features



Basic idea

- -Genetic Algorithms: Arguable good search strategy.

But generally done on bit strings or the like which
don't translate easily to solution space.

+ -Genetic Programming: Applies LISP like syntax to

GAs so they can solve more general problems with
less translation work.

+ -Object Oriented Programming: Useful abstraction for

human programming.

- Can we combine Genetic Programming and Obiject

Oriented Programming and get anything useful?



Previous work

Koza, John R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection.

- -Individuals trees of LISP operations
- -Each operation closed so we can apply any in any

order

- -Mutation changes operations and operands-

Crossover just copies on section of the tree to
another individual

« -To evaluate just run expression

Used with success in real world problems



Previous work

Montana, David (1995) Strongly Typed Genetic
Programming.

« -Based on GP
- -But operations not closed to one type of value
« -So individuals need to be moderated so each

operator returns correct value for parent

« -Mutation and crossover need to respect this

property.

- Article claims STGP reduces search space and

Increases performance but is not without its
drawbacks and needs further work.



What might we get?

- Advantages of GP

- But add

- -Explicit modularity

» -Allow more insight into current solution
at each level



Reality check

- Can we do anything like OO?
« Sure we can just pretend the basic tree structure is

an object hierarchy.

Each object has a "execute" method which calls
execute on the objects contained in it.

- This is kind of silly as it basically just renames GP but

at least we know we have a trivial default which is
equivalent to GP.

- We can also do the same thing for strongly typed GP

just have each execute method require specific types
for inputs.



Possible features

Explicitly named functions:Basic GP has no way of
preserving some group of operations that are useful
and reusing them in multiple locations (though
crossover does this to some degree).

Each object could be born with named methods
which could mutate etc... and be used in the objects
execute method. "parent objects"” could then make
use of the methods.

Problem: what if crossover moves child out from
under and object and it was using a method in that
object.



Possible features

Try sequential programming

Construct some objects (maybe as above) call
objects methods on random objects storing results as
you go.

Pass these stored inputs into next calls randomly.

Eventually return a call to a method that returns
appropriate response.

Mutations could add or remove function calls etc...

Entire problem could be constructed this way if
desired.



Possible features

« Context evaluation: (stolen from
Richard)

» Using the above sequential design we
could produce root level in which we
could evaluate objects.i.e. pick several
sequences (perhaps highest fithess)
and the switch in and out objects see
what happens to fithess.



Possible features

- Solution is object:We could try having
the solution be an object with methods
on it.

* For starters these would be our basic
operators

- But we could try allowing the GOOP to
find insightful methods on the object.
Which can then be used.



Possible features

* Whatever people can come up with :)



